COMPUTE!

Combining
BASIC And
Machine-
Language
Programs On
Tape

George Wells

This article describes a procedure to combine a
machine-language program and a BASIC program
into a single cassette tape file which can be LOADed
and RUN without exiting BASIC. This procedure is
specifically applied to a SYM-1, but the technique
may be applicable to other machines, particularly
Microsoft BASICs that store programs on tape in
tokenized form exactly as they appear in memory.
General Discussion Of Technique
Whenever a BASIC programmer wants to jump to a
machine-language program by way of the USR com-
mand, he has to decide where in RAM he is going to
put the object code for the machine-language pro-
gram. The usual place to put such code (assuming it
is too big to squeeze into one of the unused areas on
page zero or page one or some other place) is near
the top of his contiguous RAM space which starts at
page zero and includes at least 4K or 8K of memory.
The method by which this is accomplished is to exit
BASIC, load the object code from a file on tape, re-
enter BASIC with an appropriate response to
MEMORY SIZE? so BASIC will not use the
memory allocated to the machine program and final-
ly LOAD and RUN the BASIC program. In order
to avoid this cumbersome procedure, we can put the
two types of programs next to each other so that they
can be LOADed together from one tape file into
memory.

The technique to perform this is to make two
tape files, the first one containing the BASIC pro-
gram and the second one containing the machine
code assembled somewhere in memory after the end
of the BASIC program. Then all you have to do is
enter BASIC, LOAD the BASIC program, LOAD
the machine program, and SAVE the combined pro-
gram. Now you have both programs on the same
tape file which can be LOADed just like any other
BASIC program. If you change the BASIC program,

November/Decamber. 1980 ssue 7

you will have to reLOAD the machine program and
reSAVE the combined program. There are two pit-
falls to be avoided when making changes. First, if the
BASIC program expands to the point where it runs
into the machine code, you will have to reassemble
the machine program at a higher address, make a
tape copy, modify the BASIC program to link pro-
perly to the new machine code, rel.OAD the new
machine code, and reSAVE the new combined pro-
gram. Second, if you get a BAD LOAD error when
trying to LOAD the machine code, your BASIC pro-
gram will be deleted; so it’s a good idea to SAVE the
BASIC program after making any changes. In order
to avoid these problems, you will probably want to
assemble your machine-language program at the top
of your RAM and check out your BASIC program as
much as possible before combining the two programs
together.

Specific Example On A SYM-1

This example will take a BASIC program that uses
the trig functions and combine it with the machine
code which the user must supply in order to use trig
with the SYM-1 BASIC. It's a good idea to practice
this technique on a simple BASIC program to get a
feel for how it works before attempting a serious ap-
plication,

STEP 1: Cold start to BASIC and enter the follow-
ing program:
100 X = Y: REM CHANGE Y TO LAST
PAGE OF
TRIG.
110 POKE 196,104: POKE 197, X
120 PRINT SIN(1), COS(2), TAN(3),
ATN(4)
STEP 2: Save the BASIC program on tape with
SAVE B.

STEP 3: Go to the monitor (by way of Reset) and
look at memory locations $7D and $7E. These two
values are the low and high bytes of the first
available address after the BASIC program. The
value of this address should be increased by at least
30 or 40 or even several hundred if extensive changes
are expected in the BASIC program. In this exam-
ple, we could safely start the machine code anywhere
after address $0290.

STEP 4: Store the object code for the trig functions
(from Synertek Systems, Inc. Technical Note 53) so
that it ends at the end of page three.

STEP 5: Save the machine code on a second tape
using an 1D of $4D (ASCII *“M’") with the following
command:

.52 4D,2C7-3FF

STEP 6: Cold start back to BASIC and LOAD B to
get the BASIC program.

STEP 7: Since we now know the location of the
machine code, re-enter line 100:

November/Decembper. 1980, Issue 7

COMPUTE! 141

100 X = 3: REM TRIG FUNCTIONS

END ON

PAGE 3.
STEP 8: Save the modified BASIC program on your
first tape with SAVE B.
STEP 10: Enter LOAD M 1o load the machine
code. If you get a LOADED message, go to STEP
12, If you get a BAD LOAD error message continue
with STEP 11.
STEP 11. Reload the BASIC program with LOAD
B and continue from STEP 10.
STEP 12: Save the combined program on a third
tape with SAVE C. At this point, you can enter any
valid BASIC command (try RUN and LIST) but
when you get ready to modify the BASIC program
continue from STEP 13.
STEP 13: Make as many changes as desired but DO
NOT RUN the program.
STEP 14: Save the program on your first tape with
SAVE B. This tape will now contain a valid BASIC
program combined with invalid machine code. If you
are sure that there is no danger of your BASIC pro-
gram expanding into your machine code then con-
tinue from STEP 10. If you are not sure, continue
with STEP 15.
STEP 15: There is no easy way (o Lell how big the
BASIC part of the combined program is since the ad-

dress at $7D, $7E is pointing somewhere near the
end of the machine code. You could go to the
monitor and manually search for three zero-bytes in
a row which shouldn’t be too hard if you have a
general idea of where to look. Don’t forget to insure
that the system RAM is not write-protected after
returning to BASIC. Another way to accomplish the
same thing without leaving BASIC is to enter the
following direct command (without spaces):

FORI = 515TO33333:.IFPEEK(I-3) () 0ORPEEK
(I-2) () 0OORPEEK (I-1) () OTHENNEXT

and wait for BASIC to respond with OK (it can take
minutes). Then enter PRINT I and the computer
will give the decimal equivalent of the first unused
memory location after the BASIC program. If you
run out of space between the two programs, reassem-
ble the machine-language program at a higher ad-
dress and continue at STEP 5. If you decide that you
have sufficient space between the programs, you can
continue at STEP 10.

NOTE: If at any time you suspect that the
BASIC program has clobbered the machine program,
you should reset your system, cold start to BASIC,
LOAD B with the latest version of your program and
continue at STEP 15.

NOTE: If you continue the trig functions with a
BASIC program as in this example, you should take
precaution to set the pointer at 196 and 197 back to

142

COMPUTE!

its original value when leaving your program or
avoid using any of the trig functions unless you pro-
perly re-attach the trig function object code. The
original values of 196 and 197 are 2 and 208, respec-
tively.

Theory Of Operation

The key to understanding how this technique works
is in knowing the three ways that the Microsoft
BASIC interpreter modifies the pointer to the start-
of-variables ($7D and $7E in the SYM-1), and in
realizing that the pointer to the start-of-program (878
and $7C in the SYM-1) never gets modified once it
is initialized by a cold start. In the SYM-1 the
BASIC program always begins at location $0201 and
there is a mandatory zero-byte at location $0200
which is put there only during cold start.

The first way that the interpreter modifies the
start-of-variables pointer is through the NEW com-
mand which scts the pointer to a value that is equal
to the start-of-program pointer plus two ($0203 in the
SYM-1). This reduces the size of the BASIC pro-
gram to two bytes which the NEW command clears
to zeroes. In addition to being executed by a direct
or indirect command or by a cold start, the NEW
command is also automatically executed any time a
tape LOAD command results in a BAD LOAD.
This is why STEP 11 is required in the above exam-
ple.

The second way the interpreter can modify the
start-of-variables pointer is when a tape LOAD com-
mand results in the file being LOADED correctly. In
this case, the pointer is set to one greater than the
location of the last byte in the tape file and the other
required pointers are updated with the NEW com-
mand. This is why it is possible to LOAD the
machine code after the BASIG program and allow
the interpreter to automatically adjust the pointers to
allow you to SAVE and RUN the combined pro-
gram. This is also why the Synertek Tech Note for
using trig functions states that you must type either
NEW or LOAD x after loading the file containing
the trig object code into the top of your RAM space.
If you didn’t the variables would reside in non-
existent RAM!

The third occasion in which the interpreter
modifies the start-of-variables pointer is when a new
line of a BASIC program is entered, although not in
the way you might expect. After the interpreter finds
the place in memery where the new line is to go, it
calculates the change in the number of bytes that the
new line will cause, cither plus or minus. It then
shifts memory by this amount beginning with the
next line in the BASIC program and ending with the
byte just before the start-of-variables. Next it updates
the start-of-variables pointer by the same amount
and then copies the new line into place. The impor-
tant thing to note is that the interpreter is not in-
fluenced by the actual end of the BASIC program
(the three zero-bytes) when it moves memory, so the

machine code gets moved too. This is why it is
necessary to reLOAD the machine code whenever a
change is made in the BASIC program.
Conclusion

Now that you SYMmers know how easy it is to com-
bine BASIC and machine-language pragrams, how
about some neat utilities for BASIC? The rest of you
can try this same technique on your awn machines to
see i it will work. Maybe someone with access to
alot of different micros ¢can publish a list of those that
will and won’t allow this technique to work. (0}

SYM (AIM)
Hi-Speed
Tape Revisited

Gene Zumchak

Only a few days after I mailed in the article on
SYM's high speed tape, and how loading might be
improved by tweaking the value of HSPBDY, 1
received issue #3 of SYM-PHYSIS, the SYM Users
Group newsletter. It contained an interesting note by
Jay C. Sinnett, U.S. Environmental Protection
Agency, South Ferry Road, Narragansett, R.IL.
02882. He claimed that the volume range for loading
SYM tapes could be expanded by making a hard-
ware modification. Figure 1. shows his mod. He
merely reconnected the clipping diodes so that clip-
ping action does not occur until a diode drops above
+5, and below ground. He explains that for many
recorders, the amplitude of the positive and negative
going peaks is not always equal, or constant. The
diodes as connected allow charge to be trapped on
€16 which changes the threshold point.

I made the change on my SYM and the results
were amazing. Previously, I was only able to read in
tapes with the volume level on my recorder at 7 plus
or minus one-half. After the change, I could load
from levels of 1 to 8. On another SYM, I was unable
to load tapes at all. I made the change and was able
to load tapes consistantly, and over a wide range of
volume settings. Since the AIM and SYM tape cir-
cuits arc similar, particularly in regard to the connec-
tion of the diodes, AIM users with marginal tape
reading might also benefit from the mod.

. +4Y

€6 Rez 3 o r o
ATS i i "

2zuf K
] J Hu 93 gores wcrz (31 SO

mze 10K TiNsla [INSIG 5 26,4 T: 17

pee e M Tiuf AUD
:‘rvs%_ Cesy T L_.._._-;l' o

RIS
e 5V
rga B~ 10on L

Figure 1. SY;I Tape Hardwarc Mod e

Novemper/Decemoer. 1980, ssue 7

